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Abstract—The performance of the conventional bearings-only
tracking (BOT) from a single passive sensor largely depends on
the sensor platform maneuvers. This paper presents a new BOT
approach based on fusion from two heterogenous bearings-only
sensors residing on the same moving or stationary platform. The
two sensors are an ESM/EO with negligible propagation delay
and an acoustic sensor with significant propagation delay. Since
target range information is contained in the acoustic propagation
delay, the problem is therefore observable even when the platform
is stationary. An out-of-sequence measurement fusion from the
acoustic and ESM/EO sensors (OOSM-AE) is developed to
estimate the target trajectory. It consists of an unscented Kalman
filter (UKF) to handle in-sequence ESM/EO measurements and
an OOSM unscented Gauss-Helmert filter (OOSM-UGHF) to
handle out-of-sequence acoustic measurements. Simulation tests
are conducted to demonstrate the performance of this new BOT
approach.

Keywords—Propagation delay, bearings-only tracking, target
motion analysis, unscented Gauss-Helmert filter, out-of-sequence
measurement.

I. INTRODUCTION

The commonly used passive sensors, like acoustic sensors,
electronic support measures (ESM) sensors and electro-optical
(EO) sensors, detect target bearings only. This makes the
target trajectory estimation from range-absent measurements
a challenging problem.

Several approaches have been developed in the last four
decades. The most popular one is to deploy a passive sensor on
a maneuvering platform, and the target trajectory is estimated
using bearings-only tracking (BOT) or bearings-only target
motion analysis (BO-TMA) [15] [1]. This approach requires
the sensor platform to maneuver, so the target trajectory is
observable [16] [11] [6]. Since these maneuvers can interfere
with the sensor platform’s own mission (for example: to reach
its destination as early as possible), BOT from a nonmaneuver-
ing sensor has attracted attention recently. Results showed that
the BOT problem is indeed observable from a nonmaneuvering
sensor when a target is performing particular maneuvers (two-
leg with constant speed, or constant turn) [12] [7]. However,
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there is still a gap to transition these results to real applications,
for the target can maneuver in a manner unbeknownst to the
observer, and the nearly constant velocity (CV) motion is the
common motion used in operation.

The BOT approach has been extended to the Doppler-
bearing tracking (DBT) approach in [17] [10]. This approach
tracks target position and emitted frequencies from bearings
and Doppler shifted frequencies and a target trajectory can
be estimated even when the platform is not maneuvering.
The difficulty faced in DBT is to identify target frequencies
from a noisy environment, especially when the target emitted
frequencies are varying.

Another approach is to locate targets through triangulation
from multiple stationary or moving passive sensors located at
different positions. This approach needs to remove triangula-
tion ”ghosts” in multi-target scenarios, and can be solved as an
S-D assignment problem, where S is the number of sensors.
A Lagrangian relaxation was suggested to solve the problem
when S ≥ 3 [18] [8]. By making use of Doppler frequencies,
the number of sensors can be reduced to 2 (S = 2) [20].

In this paper, we propose a new bearings-only approach
to fuse measurements from two heterogenous passive sensors
deployed on the same platform which can be either moving
or stationary. The two sensors are a passive ESM/EO sensor,
designated as s1 and a passive acoustic sensor, designated as
s2. Both sensors detect target bearings only. The ESM/EO
sensor’s detections have no propagation delay, whereas the
acoustic sensor receives the target signals after significant
propagation delays. The time difference between the reception
times of the two sensors is the acoustic propagation delay, and
the target range can then be inferred from the estimates of these
delays assuming the propagation speed is known. Complete
observability in this BOT problem is therefore obtained, as
range is implied in the sensors’ reception times.

However, to obtain target range using the principle men-
tioned above is not straightforward. To compute the acoustic
propagation delay, a pair of passive signals from s1 and s2
having the same emission time needs to be identified. A BOT
target usually emits continuous signals which are received
by the sensors and discretized by sampling. They are not
instantaneous signals, like ”ping” or ”pulse” which can be
associated easily. There is no feature to identify an acoustic
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bearing measurement and an ESM/EO measurement emitted at
the same time. Furthermore, the ESM/EO and acoustic sensor
may have different sampling times (they are asynchronous),
and the sensor platform may be dynamic. These make the
problem even more complicated. A comprehensive algorithm
is therefore needed to take all these issues into consideration.

Fig. 1. Out-of-sequence measurements in ESM/EO and acoustic sensors.

Fig. 1 illustrates the ESM/EO and acoustic signal emission
and reception time sequences, where k is the reception time
index, which orders the combined acoustic and EO/ESM
discretized signals by arrival (sensor) time. This is also the
measurement index, while i and j are the target signal emission
time indexes from s1 and s2, respectively. It can be seen
that out-of-sequence measurements (OOSM) occur due to the
acoustic propagation delay.

The OOSM problem is also referred to as “negative-
time measurement update” problem, namely, the state time,
te2j , corresponding to the latest measurement at ts2k is earlier

than the latest state updating time, te1i , namely te2j < te1i
The prediction step in the in-sequence estimation becomes a
retrodiction in the OOSM. The OOSM problem has been well
studied [5]. The simplest approach performs an approximate
retrodiction by neglecting the process noise [5]. This approach
is referred to as Algorithm C [5]. Algorithms B1 and A1
were proposed to solve the one-step-lag OOSM by considering
process noise [9] [3], and they give an approximate and the
exact solutions, respectively. They were further developed to
the algorithms Bl1 and Al1 for solving the l-step-lag OOSM
(l > 1) in a single step [4].

The existing OOSM algorithms mentioned above assume
that retrodiction time is known. However, the retrodiction time
is the acoustic signal emission time in our problem. This is
unknown to the observer and depends on the state of the target
which is given by the following propagation delay constraint:

te2j = ts2k − δj (1)

where

δj =
rj
cp

(2)

is the propagation delay, cp is the signal propagation speed
in the medium, and rj , which depends on the state (at the
emission time), is the distance from the target at time te2j to

the sensor at time ts2k . This leads to an implicit constraint in
state transition model.

Recently, we have formulated implicit constraint dynamic
estimation problem to a Gauss-Helmert model (GHM), and
proposed an unscented Gauss-Helmert filter (UGHF) [22]
[21] to solve this problem. The existing UGHF works with
in-sequence measurements. Further development on OOSM-
UGHF is presented in this paper.

The aim of this paper is to develop a comprehensive al-
gorithm to estimate states with fusion of in-sequence bearings
from the ESM/EO sensor (s1) and out-of-sequence bearings
from the acoustic sensor (s2). State estimation for the bearings
from s1 will be performed by a unscented Kalman filter (UKF),
and for s2, a new OOSM-UGHF will be developed. They are
described in the following sections.

Unscented transform (UT) is selected to approximate non-
linear transformations in both in-sequence and out-of-sequence
estimations in this paper. This is because it provides better
accuracy than the first-order Taylor linearization (used in the
extended Kalman filter) by accounting for the asymmetry
of the nonlinear transformation. Compared to the particle
filtering approach, a UT is orders of magnitude less demanding
computationally. The UT has advantages in both estimation
accuracy and efficiency, which are important factors in real
applications.

II. STATE ESTIMATION WITH THE ESM/EO SENSOR

The state estimation for the ESM/EO bearings is straight-
forward as the measurement is in-sequence and no propagation
delay needs to be taken into consideration. The problem is
formulated based on the nearly CV state model (or WNA —
white noise acceleration). The target state with size 4 is defined
as

x4(ts1k ) = [ x(ts1k ) y(ts1k ) ẋ(ts1k ) ẏ(ts1k ) ]
′

(3)

where ts1k is the signal reception (or sensor) time by the
ESM/EO sensor s1 at time cycle k. Since the propagation delay
is negligible for s1, the target signal emission time te1i is equal
to ts1k . The state transition model is1

x4(ts1k ) = F(ts1k , ts1k−1)x
4(ts1k−1) + v4(ts1k , ts1k−1) (4)

where the transition matrix is

F(ts1k , ts1k−1) =







1 0 Tk,k−1 0
0 1 0 Tk,k−1

0 0 1 0
0 0 0 1






(5)

and
Tk,k−1 = ts1k − ts1k−1 (6)

with v4 the zero-mean process noise (WNA) for the interval
(ts1k , ts1k−1]. The resulting discretized white noise acceleration
(DWNA) model [2] has covariance

Q4(ts1k , ts1k−1) =













T 3

k,k−1

3
0

T 2

k,k−1

2
0

0
T 3

k,k−1

3
0

T 2

k,k−1

2
T 2

k,k−1

2
0 Tk,k−1 0

0
T 2

k,k−1

2
0 Tk,k−1













q

(7)

1Here it is assumed for simplicity that the measurements arriving at tk−1

and tk are both from sensor s1.

1811



where q is power spectral density (PSD) of the motion process
noise (same for x and y, and assumed independent between
the coordinates). The measurement model is given by

z(ts1k ) = b(ts1k ) = tan−1

[

x(ts1k )− xs(ts1k )

y(ts1k )− ys(ts1k )

]

+ w(ts1k ) (8)

where xs(ts1k ) and ys(ts1k ) are the sensor positions at time
ts1k in the x and y coordinates respectively, w(ts1k ) is zero-
mean white Gaussian measurement noise with variance R(ts1k ),
assumed independent of the process noise.

The unscented Kalman filter (UKF) is used to estimate the
state [13].

III. STATE ESTIMATION WITH THE ACOUSTIC SENSOR

An out-of-sequence-measurement filter is required for the
bearings from the acoustic sensor s2. It can be seen in Fig. 1
that an acoustic measurement received at time ts2k corresponds
to the target state at emission time te2j , which is earlier than
the latest state assumed to have been updated by the ESM/EO
sensor at time ts1k−1 = te1i . The problem is then to update the

state estimate x̂4(ts1k−1|t
s1
k−1) with the acoustic measurement

z(ts2k ). The main challenge of this problem compared to the
existing OOSM approaches is that the time te2j is unknown,
and it needs to be estimated together with the kinematic state.

The OOSM approach to address the above mentioned
problem consists of the following steps:

• Retrodict the state from time te1i = ts1k−1 to the
(unknown) emission time te2j (to be estimated) cor-

responding to the sensor time ts2k . The state before
retrodiction is x̂4(ts1k−1|t

s1
k−1), and the state after retro-

diction is x̂5(te2j |ts1k−1). The latter, defined in (9),
includes the acoustic emission time.

• Update the state estimate x̂4(ts1k−1|t
s1
k−1) to

x̂4(ts1k−1|t
s2
k ) by the acoustic OOSM z(ts2k ).

The unscented transform is used in the above two steps instead
of the first-order Taylor linearization used in the existing
OOSM algorithms [4] [5].

A. State Retrodiction

The retrodiction has to be done to the emission time te2j
that is unknown to the observer, but can be derived from the
propagation delay constraint described in (1). To estimate the
retrodicted target kinematic information and the emission time
te2j simultaneously, the following augmented state is defined:

x5(te2j ) =
[

x(te2j ) y(te2j ) ẋ(te2j ) ẏ(te2j ) te2j
]′

(9)

Obviously, the positions x(te2j ), y(te2j ) and the time te2j de-
pend on each other, and this leads to the retrodicted state
x̂5(te2j |ts1k−1) and the latest state estimate x̂4(ts1k−1|t

s1
k−1) to

have an implicit relationship. The Gauss-Helmert transition
model [22] [21], which handles such implicit relationships,
is then used for retrodiction. This is described by

g
[

x5(te2j ),x4(ts1k−1)
]

+ v5(ts1k−1, t
e2
j ) = 05 (10)

where g[·] is the Gauss-Helmert implicit state transition func-
tion, which combines the target motion constraints and the

delay constraint between x5(te2j ) of dimension 5 and x4(ts1k−1)
of dimension 4. Assuming the target motion follows a WNA
motion, g[·] is given by

g[·] = [ g1(·) g2(·) g3(·) g4(·) g5(·) ]
′

(11)

where

g1 = x(te2j )− x(ts1k−1)− ẋ(ts1k−1)Tj,k−1 (12)

g2 = y(te2j )− y(ts1k−1)− ẏ(ts1k−1)Tj,k−1 (13)

g3 = ẋ(te2j )− ẋ(ts1k−1) (14)

g4 = ẏ(te2j )− ẏ(ts1k−1) (15)

g5 = te2j +
rj
cp

− ts2k (16)

and
Tj,k−1 = te2j − ts1k−1 < 0 (17)

rj =
√

[x(te2j )− xs(ts2k )]2 + [y(te2j )− ys(ts2k )]2 (18)

Note that Eq. (16) is the one that connects the emission time
and location to the corresponding sensor reception time.

The process noise v5 is the zero-mean Gaussian. Based on
the DWNA model [5], its covariance is

Q5(te2j , ts1k−1) =
















|Tj,k−1|
3

3
q 0

T 2

j,k−1

2
q 0 0

0
|Tj,k−1|

3

3
q 0

T 2

j,k−1

2
q 0

T 2

j,k−1

2
q 0 |Tj,k−1|q 0 0

0
T 2

j,k−1

2
q 0 |Tj,k−1|q 0

0 0 0 0 qδ

















(19)

where q is as in (7), and qδ is the variance of the process noise
in the delay.

The algorithm used for retrodiction is the UGHF [22] [21],
which obtains the retrodicted state iteratively through a Gauss-
Newton algorithm. Given x̂4(ts1k−1|t

s1
k−1) and its error covari-

ance P4(ts1k−1|t
s1
k−1), the sigma points and their corresponding

weights are
[

{x̂4,m(ts1k−1|t
s1
k−1)}, {w

m}
]

=

SigmaPts
[

x̂4(ts1k−1|t
s1
k−1),P

4(ts1k−1|t
s1
k−1), κ

]

(20)

where

x̂4,0(ts1k−1|t
s1
k−1) = x̂4(ts1k−1|t

s1
k−1) (21)

x̂4,m(ts1k−1|t
s1
k−1) = x̂4(ts1k−1|t

s1
k−1) (22)

+
[√

(4 + κ)P4(ts1k−1|t
s1
k−1)

]

|m|

(m = 1, . . . , 4)

x̂4,m(ts1k−1|t
s1
k−1) = x̂4(ts1k−1|t

s1
k−1) (23)

−
[√

(4 + κ)P4(ts1k−1|t
s1
k−1)

]

|m|

(m = −4, . . . ,−1)

w0 =
κ

4 + κ
(24)

wm =
1

2(4 + κ)
|m| = 1, · · · , 4 (25)
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where m = −4, . . . , 4, is the sigma point index,
[√

(4 + κ)P(tek−1|t
s1
k−1)

]

|m|
indicates the |m|th column of

the matrix
[√

(4 + κ)P4(ts1k−1|t
s1
k−1)

]

, and κ is a scalar that

determines the spread of sigma points. Each sigma point is
retrodicted from the previous target time ts1k−1 to an unknown

time (te2j )m. The problem is then to solve

g
[

x̂5,m(te2j |ts1k−1), x̂
4,m(ts1k−1|t

s1
k−1)

]

= 05 m = −4, . . . , 4
(26)

Note that the process noise is not taken into consideration in
the OOSM algorithm C.

A Gauss-Newton algorithm is applied to obtain the points
x̂5,m(te2j |ts1k−1) iteratively. The iteration procedure (with index
n) for the mth sigma point is

[x̂5,m(te2j |ts1k−1)]
n = [x̂5,m(te2j |ts1k−1)]

n−1 +A−1

×g
[

[x̂5,m(te2j |ts1k−1)]
n−1, x̂4,m(ts1k−1|t

s1
k−1)

]

(27)

where A (without arguments, for conciseness) is the Jacobian
matrix given by

A =
∂g

[[

x̂5,m(te2j |ts1k−1)
]n

, x̂4,m(ts1k−1|t
s1
k−1)

]

∂
[

x̂5,m(te2j |ts1k−1)
]n

=















1 0 0 0 −ẋm(ts1k−1|t
s1
k−1)

0 1 0 0 −ẏm(ts1k−1|t
s1
k−1)

0 0 1 0 0
0 0 0 1 0
xr
j

rjcp
yrj
rjcp

0 0 1















(28)

and

xr
j

∆
= [xm(te2j |ts1k−1)]

n − xs(ts2k ) (29)

yrj
∆
= [ym(te2j |ts1k−1)]

n − ys(ts2k ) (30)

rj
∆
=

√

(xr
j)

2 + (yrj )
2 (31)

The initial of the mth sigma point [x̂5,m(te2j |ts1k−1)]
0 for the

iteration process in (27) is computed approximately by

[xm(te2j |ts1k−1)]
0 = xm(ts1k−1|t

s1
k−1)+ẋm(ts1k−1|t

s1
k−1)×[∆(te2j )]0

(32)

[ym(te2j |ts1k−1)]
0 = ym(ts1k−1|t

s1
k−1)+ẏm(ts1k−1|t

s1
k−1)×[∆(te2j )]0

(33)

[ẋm(te2j |ts1k−1)]
0 = ẋm(ts1k−1|t

s1
k−1) (34)

[ẏm(te2j |ts1k−1)]
0 = ẏm(ts1k−1|t

s1
k−1) (35)

[(te2j )m]0 = ts2k − δj (36)

where

[∆(te2j )]0 = [(te2j )m]0 − ts1k−1 (37)

δj ≈ rmk−1/c
p (38)

and rmk−1 is the distance between the target estimate and the
sensor at time ts1k−1.

The retrodicted state x̂5(te2j |ts1k−1) and its error covariance

P5(te2j |ts1k−1) are then computed from weighted sums of the
retrodicted sigma points.

x̂5(te2j |ts1k−1) =

4
∑

m=−4

wmx̂5,m(te2j |ts1k−1) (39)

P5(te2j |ts1k−1) ≈
4

∑

m=−4

wmx̃5,m(te2j |ts1k−1)(x̃
5,m(te2j |ts1k−1))

′

(40)

where

x̃5,m(te2j |ts1k−1) = x̂5,m(te2j |ts1k−1)− x̂5(te2j |ts1k−1) (41)

with m = −4, . . . , 4.

B. State Update

This step updates x̂4(ts1k−1|t
s1
k−1) to x̂4(ts1k−1|t

s2
k ) by the

OOSM z(ts2k ) — it fuses the latter into the former. Note that
the sigma points of x̂4(ts1k−1|t

s1
k−1) have been generated in (20).

According to the MMSE estimator [2], x̂4(ts1k−1|t
s2
k ) and

its error covariance P4(ts1k−1|t
s2
k ) are

x̂4(ts1k−1|t
s2
k ) = x̂4(ts1k−1|t

s1
k−1) +PxzP

−1
zz [z(ts2k )− ẑ(ts2k )]

(42)

P4(ts1k−1|t
s2
k ) = P4(ts1k−1|t

s1
k−1)−PxzP

−1
zz P′

xz (43)

The expected measurement ẑ(ts2k ) is based on the retrodicted
state x̂5,m(te2j |ts1k−1) as

ẑ(ts2k ) =
4

∑

m=−4

wmẑm(ts2k ) (44)

where

ẑm(ts2k ) = h
[

x̂5,m(te2j |ts1k−1)
]

= tan−1

[

xm(te2j |ts1k−1)− xs(ts2k )

ym(te2j |ts1k−1)− ys(ts2k )

]

(45)

The variance Pzz of the innovation and the covariance Pxz

are computed by

Pzz =
4

∑

m=−4

wm[z̃m(ts2k )]2 +R(ts2k ) (46)

Pxz =

4
∑

m=−4

wmx̃4,m(ts1k−1|t
s1
k−1)z̃

m(ts2k ) (47)

x̃4,m(ts1k−1|t
s1
k−1) = x̂4,m(ts1k−1|t

s1
k−1)− x̂4(ts1k−1|t

s1
k−1) (48)

z̃m(ts2k ) = ẑm(ts2k )− ẑ(ts2k ) (49)

The OOSM-UGHF does not create new states, it only
updates the states generated by the bearings from s1 before.
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IV. SIMULATION RESULTS

Simulation results are preseued to demonstrate the new
algorithm’s performance. The conventional BOT approach is
also evaluated using the same simulation data. Two sensor
platform scenarios are used in the simulation tests:

• Maneuvering (M): It has three legs linked by two
90o turns with turn rate 3o/s shown in Fig. 2. The
platform speed is 10m/s throughout the whole path.
It moves to the east for 60s, spends 30s to make a
90o left turn, and moves to the north for 60s. It then
makes a 90o right turn, and moves towards the east
for 180s. The total duration is 360s.

• Stationary (S): The platform stays at position (0m,
0m) for 360s.

An ESM sensor and an acoustic sensor are deployed on the
platform to detect target bearings regularly. The two sensors
are not synchronized. Their sampling intervals and initial
detection times are different. The ESM sensor is initiated
at time 0s with sampling interval 1s, whereas, the acoustic
sensor is initiated at time 0.2s with sampling interval 2s.
The measured bearing errors of the ESM and the acoustic
sensors are zero-mean white Gaussian with standard deviations
σb = 1o. Both sensors have no bearing detection during turns
(total missed detection duration is 60s for the maneuvering
platform scenarios).

�25 �20 �15 �10 �5 0 5

�10

�5

0

5

x (km)

y
 (

k
m

)

sensor

tgt4
tgt3
tgt2
tgt1

tgt1: speed=    5m/s
tgt2: speed=  10m/s
tgt3: speed=  50m/s
tgt4: speed=100m/s

Fig. 2. Test scenarios. Initial locations of the targets and the maneuvering
sensor platform are shown as ”o”. The stationary platform is not shown in the
figure.

Four targets moving at constant speeds of 5m/s, 10m/s,
50m/s and 100m/s respectively are shown in Fig. 2. The state
estimation starts 50s later after targets move from their initial
positions, so the acoustic signal can be guaranteed to reach the
sensor platform when estimation starts. This means that the
targets are at their initial points at time –50s, and the sensor
platform is at its initial point at time 0s. The estimation starts
at time 0s.

The algorithms used in the simulation are:

• OOSM-AE: The acoustic-ESM fusion algorithm pro-
posed in this paper. The OOSM-UGHF is applied to
the bearings from the acoustic sensor, and the UKF
is used to the bearings from the ESM. It works for

both stationary and moving (maneuvering or nonma-
neuvering) platform.

• UKF-E: A UKF to estimate state based on the ESM
bearings only. The acoustic bearings are regarded as
“expired” information and discarded. This algorithm
is considered as a conventional BOT approach which
works for maneuvering platform only.

The initial state estimate is2

x̂4(ts10 ) = [ r̂0 sin b0 r̂0 cos b0 0 0 ]
′

(50)

where r̂0 is set to 10000m which is more than 4000m away
from the ground truth (r0 = 4000m∼ 6000m), and b0 = b(ts10 )
is the ESM measured bearing at time ts10 = 0s. The initial state
error covariance is computed by [19]

P4(ts10 ) =







Pxx Pxy 0 0
Pyx Pyy 0 0
0 0 900 0
0 0 0 900






(51)

where

Pxx = (r̂0σb cos b0)
2 + (σr sin b0)

2 (52)

Pyy = (r̂0σb sin b0)
2 + (σr cos b0)

2 (53)

Pxy = Pyx = (σ2
r − r̂20σ

2
b ) sin b0 cos b0 (54)

where σr = r̂0/3 is the initial range error standard deviation.
The process noise PSD q in (7) is set to 0.01m2/s3. The
acoustic propagation speed cp in the air is 344m/s. The scalar
κ in (20)–(25) is set to 1.
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Fig. 3. Maneuvering platform: The estimated position RMSE versus time
for the target with speed 5m/s.

The simulation results were obtained from 100 Monte
Carlo runs. The estimated position root mean square errors
(RMSE) versus time are displayed in Figs. 3–8, where Figs. 3–
6 are for the maneuvering platform, and Figs. 7–8 are for
the stationary platform. The overall and the last point position
RMSEs for all the scenarios are given in Table I. The RMSEs
of the UKF-E are not shown in this table for the stationary
platform, for the targets are unobservable in this case. The

2We assume that the first bearing of a target is received from the EO/ESM
sensor, as it is natural that the non-acoustic signal of a target reaches the
sensor platform earlier than the acoustic signal.
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Fig. 4. Maneuvering platform: The estimated position RMSE versus time
for the target with speed 10m/s.
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Fig. 5. Maneuvering platform: The estimated position RMSE versus time
for the target with speed 50m/s.
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Fig. 6. Maneuvering platform: The estimated position RMSE versus time
for the target with speed 100m/s.

overall position RMSE for a particular scenario is computed
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Fig. 7. Stationary platform: The OOSM-AE estimated position RMSE versus
time for the targets with speeds of 5m/s (tgt 1), 10m/s (tgt 2), 50m/s (tgt 3)
and 100m/s (tgt 4).
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Fig. 8. Stationary platform: The UKF-E estimated position RMSE versus
time for the four targets with speeds of 5m/s (tgt 1), 10m/s (tgt 2), 50m/s (tgt
3) and 100m/s (tgt 4).

TABLE I. POSITION RMSES FOR ALL THE SCENARIOS

Target Overall RMSE Last point RMSE

Platform speed OOSM- Impro- OOSM-

AE UKF-E vement AE UKF-E

(m/s) (m) (m) (%) (m) (m)

5 1132.3 4154.1 72.7 114.9 402.8

M 10 831.6 4795.7 85.5 46.7 558.9

50 806.9 1530.8 47.3 315.5 755.0

100 605.2 2624.7 79.9 171.8 3975.4

5 2724.2 - - 836.2 -

S 10 1708.2 - - 261.3 -

50 755.7 - - 286.7 -

100 624.2 - - 445.0 -

by

posRMSE =

√

√

√

√

1

NK

N
∑

i=1

K
∑

k=1

[poserri (ts1k )]2 (55)

where i is the run index, N = 100 is the number of runs,
K = 360 is the number of time cycles in the scenario, and

poserr(ts1k ) =
√

[x̂(ts1k )− x(ts1k )]2 + [ŷ(ts1k )− y(ts1k )]2 (56)

where x̂(ts1k ) and ŷ(ts1k ) are the estimated target positions, and
x(ts1k ) and y(ts1k ) are the true target positions.
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It can be seen that the OOSM-AE clearly outperforms the
UKF-E for the maneuvering platform scenarios. The overall
accuracy improvement in terms of position RMSE is from
47% to 86%, a significant improvement. For the slow moving
targets (shown in Figs. 3–4), the UKF-E takes a longer time to
converge. The UKF-E position RMSEs start to decrease at time
180s (after the second turn), whereas the RMSE reduction of
the OOSM-AE occurs around time 25s, which is much earlier
than for the UKF-E. For the fast moving targets (shown in
Figs. 5–6), both algorithms converge fast at the beginning, but
the UKF-E has larger errors after a while.

For the stationary platform (Figs. 7–8), the OOSM-AE
provides reliable estimation, whereas the UKF-E diverges since
BOT from a single ESM sensor is not observable.

We also observe that the OOSM-AE has better performance
for the fast moving targets than the slow moving targets in both
maneuvering and stationary platform scenarios. The reason
for this is that the slow moving targets have lower bearing
change rate. The information provided by these slow changed
bearings is limited when they are “buried in the noise”, and
this results in marginal observability and slow convergence at
the beginning. This effect is more serious for the stationary
platform as its bearing change rate is even smaller than for
the maneuvering platform.

V. CONCLUSIONS

This paper presented a new passive BOT approach through
fusion of an ESM/EO and an acoustic sensor deployed on
the same sensor platform. The OOSM-AE algorithm has
been developed to estimate the target trajectory by utilizing
the acoustic propagation delay which contains target range
information. This approach avoids the requirement for plat-
form maneuvers of the conventional BOT. Simulation results
showed that the OOSM-AE can estimate the target trajectory
effectively for the stationary platform, and provides significant
accuracy improvement (47%–85%) over the conventional BOT
for the maneuvering platform. This new approach has signifi-
cant potential to enhance passive BOT capability significantly.
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